15,325 research outputs found

    The effect direction plot: visual display of non-standardised effects across multiple outcome domains

    Get PDF
    Visual display of reported impacts is a valuable aid to both reviewers and readers of systematic reviews. Forest plots are routinely prepared to report standardised effect sizes, but where standardised effect sizes are not available for all included studies a forest plot may misrepresent the available evidence. Tabulated data summaries to accompany the narrative synthesis can be lengthy and inaccessible. Moreover, the link between the data and the synthesis conclusions may be opaque. This paper details the preparation of visual summaries of effect direction for multiple outcomes across 29 quantitative studies of the health impacts of housing improvement. A one page summary of reported health outcomes was prepared to accompany a 10 000-word narrative synthesis. The one page summary included details of study design, internal validity, sample size, time of follow-up, as well as changes in intermediate outcomes, for example, housing condition. This approach to visually summarising complex data can aid the reviewer in cross-study analysis and improve accessibility and transparency of the narrative synthesis where standardised effect sizes are not available

    Computational methods for the identification of spatially varying stiffness and damping in beams

    Get PDF
    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed

    Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    Get PDF
    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented

    An approximation theory for the identification of nonlinear distributed parameter systems

    Get PDF
    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed

    Inverse problems in the modeling of vibrations of flexible beams

    Get PDF
    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented

    Methods for the identification of material parameters in distributed models for flexible structures

    Get PDF
    Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented

    On a generalized quantum SWAP gate

    Get PDF
    The SWAP gate plays a central role in network designs for qubit quantum computation. However, there has been a view to generalize qubit quantum computing to higher dimensional quantum systems. In this paper we construct a generalized SWAP gate using only instances of the generalized controlled-NOT gate to cyclically permute the states of d qudits for d prime

    Numerical studies of identification in nonlinear distributed parameter systems

    Get PDF
    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed

    The identification of a distributed parameter model for a flexible structure

    Get PDF
    A computational method is developed for the estimation of parameters in a distributed model for a flexible structure. The structure we consider (part of the RPL experiment) consists of a cantilevered beam with a thruster and linear accelerometer at the free end. The thruster is fed by a pressurized hose whose horizontal motion effects the transverse vibration of the beam. The Euler-Bernoulli theory is used to model the vibration of the beam and treat the hose-thruster assembly as a lumped or point mass-dashpot-spring system at the tip. Using measurements of linear acceleration at the tip, it is estimated that the parameters (mass, stiffness, damping) and a Voight-Kelvin viscoelastic structural damping parameter for the beam using a least squares fit to the data. Spline based approximations to the hybrid (coupled ordinary and partial differential equations) system are considered; theoretical convergence results and numerical studies with both simulation and actual experimental data obtained from the structure are presented and discussed

    MSW-like Enhancements without Matter

    Full text link
    We study the effects of a scalar field, coupled only to neutrinos, on oscillations among weak interaction current eigenstates. The effect of a real scalar field appears as effective masses for the neutrino mass eigenstates, the same for \nbar as for \n. Under some conditions, this can lead to a vanishing of δm2\delta m^2, giving rise to MSW-like effects. We discuss some examples and show that it is possible to resolve the apparent discrepancy in spectra required by r-process nucleosynthesis in the mantles of supernovae and by Solar neutrino solutions.Comment: 9 pages, latex, 1 figur
    • …
    corecore